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A formulation of singular classical theories (determined by degenerate Lagrangians)
without constraints is presented. A partial Hamiltonian formalism in the phase space
having an initially arbitrary number of momenta (which can be smaller than the num-
ber of velocities) is proposed. The equations of motion become first-order differential
equations, and they coincide with those of multi-time dynamics, if a certain condition

is imposed. In a singular theory, this condition is fulfilled in the case of the coinci-
dence of the number of generalized momenta with the rank of the Hessian matrix. The
noncanonical generalized velocities satisfy a system of linear algebraic equations, which
allows an appropriate classification of singular theories (gauge and nongauge). A new
antisymmetric bracket (similar to the Poisson bracket) is introduced, which describes
the time evolution of physical quantities in a singular theory. The origin of constraints is
shown to be a consequence of the (unneeded in our formulation) extension of the phase
space, when the new bracket transforms into the Dirac bracket. Quantization is briefly
discussed.
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1. Introduction

Many modern physical models are gauge theories (see, for example, [1–3]), which
are described at the classical level by singular (degenerate) Lagrangians [4]. The
transition to the normally used sequential quantum Hamiltonian formalism for such
singular theories is non-trivial (because it is not possible to directly apply the
Legendre transformation [5, 6]), and requires additional constructions [7, 8]. The
main difficulty lies in the appearance of additional relations between the dynamical
variables, which are called constraints [9]. These are used to construct a reduced
phase space with fewer positions and corresponding momenta. Further, the selection
of the physical subspace of the reduced phase space, where one can consistently
carry out the procedure of quantization, is needed [10, 11]. Despite the widespread
use of constraint theory [12, 13], it is not free from internal contradictions and
problems [14, 15]. So it makes sense to revise the Hamiltonian formalism itself for
singular theories with degenerate Lagrangians [16, 17].

The purpose of this paper is to describe singular theories without the help of
constraints. First, a partial Hamiltonian formalism for any Lagrangian system is
constructed with an arbitrary number of momenta which can be less than the num-
ber of velocities. The corresponding system of equations of motion derived from
the principle of least action contains the first derivatives of the canonical vari-
ables and second-order derivatives of the generalized noncanonical coordinates (for
their velocities we do not define corresponding momenta). Under certain condi-
tions, the equations for the latter are differential-algebraic equations of first-order;
such a physical system is equivalent to a multi-time dynamics (see Appendix A).
These conditions exist in theories with degenerate Lagrangians, if the number of
momenta is equal to the rank of the Hessian. Then the equations for the noncanoni-
cal generalized velocities are algebraic, and the dynamics is defined in terms of new
bracket, which, like the Poisson bracket, is antisymmetric and satisfies the Jacobi
identity. In this formalism, there are no additional relations between the dynamical
variables (constraints). It is shown that, if we extend the phase space so that the
additional (extra) momenta corresponding to the noncanonical generalized veloci-
ties are defined, the constraints would appear, a new bracket turns into the Dirac
bracket, and suitable formulas reproduce the Dirac theory [9]. For clarity, we use
local coordinates and consider a system with a finite number of degrees of freedom.

2. Preliminaries

A dynamical system (with a finite number of degrees of freedom) can be defined in
terms of generalized (Lagrangian) coordinates qA(t), A = 1, . . . , n (as a function of
time t) in the configuration space Qn (we write its dimension n as a lower index).
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The trajectory in the configuration space Qn, is determined by the equations of
motion, which is a set of differential equations for the generalized coordinates qA(t),
and their time derivatives q̇A(t), where q̇A(t) ≡ dqA(t)/dt, which define the tangent
bundle TQn of rank n (so that the dimension of the total space is 2n) [18]. Here we
do not consider systems with higher derivatives (see, e.g. [19, 20]). The equations
of motion can be obtained using different principles of action, which identify the
actual trajectory with the requirement of a functional extremity [21]. The standard
principle of least action [21] considers the functional

S =
∫ t

t0

Ldt′, (2.1)

where a differentiable function L = L(t, qA, q̇A) is a Lagrangian, and the functional
(on extremals) S = S(t, qA) is the action of a dynamical system as a function of the
upper limit of t (a fixed lower limit t0). Let us consider an infinitesimal variation of
the functional (2.1) δS = S(t + δt, qA + δqA)− S(t, qA). Without loss of generality,
we can assume that the lower limit of the variation vanishes at δqA(t0) = 0, while
the upper denotes the trajectory δqA. For the variation of δS after integration by
partsa

δS =
∫ t

t0

(
∂L

∂qA
− d

dt′

(
∂L

∂q̇A

))
δqA(t′)dt′ +

∂L

∂q̇A
δqA +

(
L − ∂L

∂q̇A
q̇A

)
δt. (2.2)

Then, from the principle of least action of δS = 0, we obtain the equations of
motion (Euler–Lagrange equations) [22],

∂L

∂qA
− d

dt

(
∂L

∂q̇A

)
= 0, A = 1, . . . , n, (2.3)

which determine the extremals under the condition that all δqA = 0 and δt = 0.
The second and third terms in (2.2) define the total differential of the action (on
extremals) as a function of (n + 1) variables: the coordinates and the upper limit
of integration in (2.1),

dS =
∂L

∂q̇A
dqA +

(
L − ∂L

∂q̇A
q̇A

)
dt. (2.4)

Thus, from the definition of the action (2.1) and (2.4), it follows that dS
dt = L,

∂S
∂qA = ∂L

∂q̇A , ∂S
∂t = L − ∂L

∂q̇A q̇A. In the standard Hamiltonian formalism [22], to
each coordinate qA one can assign the canonically conjugate momentum pA by the
formula

pA =
∂L

∂q̇A
, A = 1, . . . , n. (2.5)

aRepeated upper and lower indices imply summation. Indices in the function arguments are not to
be summed, rather they are written explicitly to distinguish between different types of variables.
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If the system of Eqs. (2.5) is solvable for all velocities q̇A, we can define the Hamil-
tonian by the Legendre transform [22]

H = pAq̇A − L, (2.6)

which defines the mapping between the cotangent and tangent bundles TQ∗
n →

TQn [18]. The right-hand side of (2.6) is expressed in terms of the momenta, so
that H = H(t, qA, pA) is a function on the phase space (or the cotangent bundle
TQ∗

n of rank n and the dimension of the total space 2n), that is independent
of 2n canonical coordinates (qA, pA). In the standard canonical formalism, each
coordinate qA has its conjugate momentum pA by the formula (2.5), we call it a
full Hamiltonian formalism (in the full phase space TQ∗

n). Then the differential of
the action (2.4) can also be written as

dS = pAdqA − Hdt. (2.7)

Therefore, for partial derivatives we get
∂S

∂qA
= pA,

∂S

∂t
= −H

(
t, qA, pA

)
, (2.8)

which implies the Hamilton–Jacobi differential equation
∂S

∂t
+ H

(
t, qA,

∂S

∂qA

)
= 0, (2.9)

which fully determines the dynamics in terms of the given Hamiltonian H(t, qA, pA).
Variation of the action

S =
∫ (

pAdqA − Hdt
)
, (2.10)

while considering the coordinates and momenta as independent variables, and fur-
ther integration by parts leads in a standard way [22] to Hamilton’s equations in
the differential formb

dqA =
∂H

∂pA
dt, dpA = − ∂H

∂qA
dt, (2.11)

for the full Hamiltonian formalism (that is, the dynamical system is fully specified
by TQ∗

n). If we define the (full) Poisson bracket by

{A, B}full =
∂A

∂qA

∂B

∂pA
− ∂B

∂qA

∂A

∂pA
, (2.12)

then Eq. (2.11) can be written in the standard form [22],

dqA =
{
qA, H

}
full

dt, dpA =
{
pA, H

}
full

dt. (2.13)

It is clear that the two formulations of the principle of the least action, that is
(2.1) and (2.10), are completely equivalent (they describe the same dynamics) from
the definitions of the momenta (2.5) and the Hamiltonian (2.6). Now we will show
in this simple language, how to describe the same dynamics using fewer generalized
momenta than the number of generalized coordinates.

bIn fact, Eqs. (2.11) are the conditions for a closed differential 1-form (2.7) (Poincaré–Cartan) [18].
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3. Partial Hamiltonian Formalism

The transition from a full to a partial Hamiltonian formalism and a multi-time
dynamics can be analyzed using the following well-known classical analogy [21],
but in its reverse form. In the study of the parametric form of the canonical equa-
tions and action (2.10), one formally introduces the extended phase space with the
following additional position and momentum:

qn+1 = t, (3.1)

pn+1 = −H. (3.2)

Then the action (2.10) takes the symmetrical form and contains only the first term
[21] (see also [23]),

S =
∫ n+1∑

A=1

pAdqA. (3.3)

Here we proceed in the opposite way, and ask: can we, on the contrary, reduce the
number of momenta that describe the dynamical system, that is, can we formulate
a partial Hamiltonian formalism, which would be equivalent (at the classical level)
to the Lagrangian formalism? In other words, is it possible to describe the system
with the initial action (2.1) in a smaller phase space initially which is not reduced,
because the full phase space is not defined at all? Can we build an analog of the
action (2.10) and obtain equations of motion which are equivalent to the Lagrange
equations of motion (2.3), and what additional conditions are needed for this? It
turns out that the answer to all these questions is positive and leads to a description
of singular theories (with degenerate Lagrangians) without introducing constraints
[16, 17].

We define a partial Hamiltonian formalism [24], so that the conjugate momen-
tum is associated not to every qA by the formula (2.5), but only for the first
np < n generalized coordinates, which are called canonical and denoted by qi,
i = 1, . . . , np. The resulting manifold TQ∗

np
is defined by 2np (reduced) canonical

coordinates (qi, pi). The rest of the generalized coordinates are called noncanonical
qα, α = np + 1, . . . , n, and they form a configuration subspace Qn−np , which cor-
responds to the tangent bundle TQn−np

(a subscript indicates the corresponding
dimension of the total space). Thus, the dynamical system is now given on the
direct product (of manifolds) TQ∗

np
× TQn−np

. For reduced generalized momenta
we have

pi =
∂L

∂q̇i
, i = 1, . . . , np. (3.4)

A partial Hamiltonian, similar to (2.6), is defined by a partial Legendre transform

H0 = piq̇
i +

∂L

∂q̇α
q̇α − L, (3.5)
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which defines a mapping of TQ∗
np

× TQn−np
→ TQn (see (2.6)). In (3.5) the

canonical generalized velocities q̇i are expressed in terms of the reduced canonical
momenta pi by (3.4). For the action differential (2.7) we can write

dS = pidqi +
∂L

∂q̇α
dqα − H0dt. (3.6)

We define

Hα = − ∂L

∂q̇α
, α = np + 1, . . . , n (3.7)

and call the functions Hα additional Hamiltonians, then

dS = pidqi − Hαdqα − H0dt. (3.8)

Note that without the second term in (3.8) the partial Hamiltonian (3.5) is the
Routh function R = piq̇

i − L, in terms of which the Lagrange equations of motion
can be reformulated [22]. However, a consistent formulation of the principle of least
action for S and a multi-time dynamics of singular systems [16] (see Appendix A)
is natural in terms of the introduced additional Hamiltonians Hα (3.7), while coor-
dinates qα can be treated as additional times (effectively, which can be observed
from (3.8)).

Thus, in the partial Hamiltonian formalism the dynamics is completely deter-
mined by not one Hamiltonian H0 only, but by the set of (n−np +1) Hamiltonians
H0, Hα, α = np + 1, . . . , n. Indeed, it follows from (3.8) that the partial derivatives
of the action S = S(t, qi, qα) are (see (2.8) for the standard case),

∂S

∂qi
= pi, (3.9)

∂S

∂qα
= −Hα

(
t, qi, pi, q

α, q̇α
)
, (3.10)

∂S

∂t
= −H0

(
t, qi, pi, q

α, q̇α
)
, (3.11)

which yields the system (n − np + 1) of Hamilton–Jacobi equations:

∂S

∂t
+ H0

(
t, qi,

∂S

∂qi
, qα, q̇α

)
= 0, (3.12)

∂S

∂qα
+ Hα

(
t, qi,

∂S

∂qi
, qα, q̇α

)
= 0. (3.13)

Now, on the direct product of TQ∗
np

× TQn−np
, the action is

S =
∫ (

pidqi − Hαdqα − H0dt
)
. (3.14)

Variation of (3.14) should be made independently on 2np-reduced canonical coor-
dinates qi, pi and (n − np) noncanonical generalized coordinates qα. Under the
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assumption that the variations of δqi, δpi, δqα at the upper and lower limits vanish
after integration by parts for the variation of the action (3.14) we obtain

δS =
∫

δpi

[
dqi − ∂H0

∂pi
dt − ∂Hβ

∂pi
dqβ

]
+

∫
δqi

[
−dpi − ∂H0

∂qi
dt − ∂Hβ

∂qi
dqβ

]

+
∫

δqα

[
∂Hα

∂q̇β
dq̇β +

∂Hα

∂qi
dqi +

∂Hα

∂pi
dpi +

d

dt

(
∂H0

∂q̇α
+

∂Hβ

∂q̇α
q̇β

)
dt

+
(

∂Hα

∂qβ
− ∂Hβ

∂qα

)
dqβ +

(
∂Hα

∂t
− ∂H0

∂qα

)
dt

]
. (3.15)

The equations of motion for the partial Hamiltonian formalism can be derived
from the principle of the least action δS = 0. Taking into account the fact that the
variations of δqi, δpi, δqα are independent, their coefficients (each bracket in (3.15))
vanish. We introduce the (reduced) Poisson bracket for two functions A and B in
the reduced phase space TQ∗

np
,

{A, B} =
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi
. (3.16)

Then, substituting dqi and dpi from the first row of (3.15) in the second line, we
obtain the equations of motion on TQ∗

np
× TQn−np

in the differential form:

dqi =
{
qi, H0

}
dt +

{
qi, Hβ

}
dqβ , (3.17)

dpi =
{
pi, H0

}
dt +

{
pi, Hβ

}
dqβ , (3.18)

∂Hα

∂q̇β
dq̇β +

d

dt

(
∂H0

∂q̇α
+

∂Hβ

∂q̇α
q̇β

)
dt

=
(

∂Hβ

∂qα
− ∂Hα

∂qβ
+

{
Hβ , Hα

})
dqβ +

(
∂H0

∂qα
− ∂Hα

∂t
+

{
H0, Hα

})
dt.

(3.19)

We see that on TQ∗
np

, we have the first-order equations (3.17) and (3.18) for the

canonical coordinates qi, pi, as it should be (see (2.11)), while on the (noncanonical)
subspace TQn−np

, Eq. (3.19) is still of second order with respect to the noncanonical
generalized coordinates qα, namely,

q̇i =
{
qi, H0

}
+

{
qi, Hβ

}
q̇β , (3.20)

ṗi =
{
pi, H0

}
+

{
pi, Hβ

}
q̇β , (3.21)

∂Hα

∂q̇β
q̈β +

d

dt

(
∂H0

∂q̇α
+

∂Hβ

∂q̇α
q̇β

)

=
(

∂Hβ

∂qα
− ∂Hα

∂qβ
+

{
Hβ , Hα

})
q̇β +

(
∂H0

∂qα
− ∂Hα

∂t
+

{
H0, Hα

})
.

(3.22)
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It is important to note that the resulting system of equations of motion (3.20)–
(3.22) of the partial Hamiltonian formalism is valid for any number of reduced
momenta (which becomes a free parameter together with the number (n − np) of
the additional Hamiltonians Hα),

0 ≤ np ≤ n. (3.23)

In other words, the dynamics is independent of the dimension of the reduced phase
space. In this case, the boundary values of np correspond to the Lagrangian and
Hamiltonian formalisms, respectively, so that we have the three cases, which are
described by Eqs. (3.20)–(3.22):

(1) np = 0 — the Lagrangian formalism on TQn (we have only the last equation
(3.22) without the Poisson brackets), and α = 1, . . . , n;

(2) 0 < np < n — the partial Hamiltonian formalism for TQ∗
np

×TQn−np
(all the

equations are considered);
(3) np = n — the standard Hamiltonian formalism on TQ∗

n (the first two
Eqs. (3.20) and (3.21) without the second terms containing noncanonical gener-
alized velocities are considered), which coincides with the standard Hamiltonian
equations (2.11), and i = 1, . . . , n.

Let us show that in the case (1) we obtain the standard Lagrange equations (for
the noncanonical variables qα). Indeed, Eq. (3.22) without the Poisson brackets
(the canonical variables qi, pi are absent in the case np = 0) can be rewritten as

∂Hα

∂q̇β
q̈β +

d

dt

∂

∂q̇α

(
H0 + Hβ q̇β

) − dHα

dt
=

∂

∂qα

(
H0 + Hβ q̇β

) − ∂Hα

∂qβ
q̇β − ∂Hα

∂t
,

(3.24)

where we derive

d

dt

(
∂H0

∂q̇α
+

∂Hβ

∂q̇α
q̇β

)
=

d

dt

[
∂

∂q̇α

(
H0 + Hβ q̇β

) − Hβ
∂

∂q̇α
q̇β

]

=
d

dt

[
∂

∂q̇α

(
H0 + Hβ q̇β

) − Hα

]
. (3.25)

Using the expression for the total derivative of dHα/dt, we obtain from (3.24),

d

dt

∂

∂q̇α

(
H0 + Hβ q̇β

)
=

∂

∂qα

(
H0 + Hβ q̇β

)
. (3.26)

The formula to determine the partial Hamiltonian (3.5) without variables qi, pi,
taking into account (3.7) is

H0 = −Hαq̇α − L. (3.27)
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Hence, H0 + Hβ q̇β = −L, so that from (3.26), we obtain the standard Lagrange
equations in noncanonical sector

d

dt

∂

∂q̇α
L =

∂

∂qα
L. (3.28)

As in the standard Hamiltonian formalism [22], a non-trivial dynamics in the non-
canonical sector is determined by the presence of noncanonical terms with second
derivatives, that is, the presence of nonzero terms on the left and total time deriva-
tives in the right-hand side of (3.22).

Consider a special case of the partial Hamiltonian formalism, when these terms
(with second derivatives) vanish, and call it nondynamical in the noncanonical
sector. This requires the following conditions on the Hamiltonians:

∂H0

∂q̇β
= 0,

∂Hα

∂q̇β
= 0, α, β = np + 1, . . . , n. (3.29)

Then (3.22) will have only the right-hand side, which can be written as:(
∂Hβ

∂qα
− ∂Hα

∂qβ
+

{
Hβ , Hα

})
q̇β = −

(
∂H0

∂qα
− ∂Hα

∂t
+

{
H0, Hα

})
, (3.30)

which is a system of linear algebraic equations for the noncanonical velocities q̇α for
given Hamiltonians H0, Hα. As in (3.30) there are no noncanonical accelerations
q̈α, so on TQn−np

there is no real dynamics, if (3.29) is satisfied.

4. Singular Theories

Let us consider in more detail the conditions (3.29) and express them in terms of
the Lagrangian. Using (3.5) and the definition of the additional Hamiltonians (3.7),
we obtain

∂2L

∂q̇α∂q̇β
= 0, α, β = np + 1, . . . , n. (4.1)

This means that the dynamics is described by a degenerate Lagrangian (singular)
theory, so that the rank rW of the Hessian matrix

WAB =
∥∥∥∥ ∂2L

∂q̇A∂q̇B

∥∥∥∥, A, B = 1, . . . , n (4.2)

is not only less than the dimension n of the configuration space, but less than or
equal to the number of momenta (due to (4.1)),

rW ≤ np. (4.3)

In considering the strict inequality in (4.3) we find that the definition of “extra”
(np − rW ) momenta results in a (np − rW ) relations, just as in the Dirac theory
of constraints [9], where there are (n − rW ) (primary) constraints, if the standard
Hamiltonian formalism is used. It is important that the dimension n of the config-
uration space and the rank of the Hessian rW are fixed by the problem statement
initially, which does not allow a change to the number of constraints.
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In the case of the partial Hamiltonian formalism the number np is a free param-
eter that can be chosen so that the constraints do not appear at all. To do this, it
is natural to equate the number of momenta with the rank of the Hessian

np = rW . (4.4)

As a result, the singular dynamics (theory with degenerate Lagrangians) can be
formulated in such a way that constraints will not occur (primary, secondary or
of higher level) [16, 17]. To do this, first, rename the index of the Hessian matrix
WAB (4.2) so that the nonsingular minor rank rW is in the upper left-hand corner,
denote with the Latin alphabet i, j the first rW indices and with Greek letters α, β

the remaining (n − rW ) indices. Next, we write the equations of motion (3.20),
(3.21), (3.30) as:

q̇i =
{
qi, H0

}
+

{
qi, Hβ

}
q̇β , (4.5)

ṗi =
{
pi, H0

}
+

{
pi, Hβ

}
q̇β , (4.6)

Fαβ q̇β = Gα, (4.7)

where the index values are connected with the rank of the Hessian by i = 1, . . . , rW ,
α, β = rW + 1, . . . , n, and

Fαβ =
∂Hα

∂qβ
− ∂Hβ

∂qα
+

{
Hα, Hβ

}
, (4.8)

Gα = DαH0 =
∂H0

∂qα
− ∂Hα

∂t
+

{
H0, Hα

}
. (4.9)

Note that the system of Eqs. (4.5)–(4.9) coincides with the equations derived in the
approach to singular theories, which uses the mixed solutions of Clairaut’s equation
[16, 17] (except for the term with the partial time derivative of Hα in (4.9)). Equa-
tions (4.5)–(4.7) are a system of first-order differential equations for the canonical
coordinates qi, pi, while with respect to the noncanonical velocities q̇α, this is an
algebraic system. Indeed, (4.7) is the usual system of linear equations with respect
to q̇α, and the properties of its solutions can be used to classify classical singular
theories. We will consider only those cases, when the system (4.7) is consistent,
then there are two possibilities determined by the rank of the matrix Fαβ :

(1) Nongauge theory, when rankFαβ = rF = n− rW is full, so that the matrix Fαβ

is invertible. Then from (4.7) we can determine all noncanonical velocities by

q̇α = F̄αβGβ , (4.10)

where F̄αβ is the inverse matrix of Fαβ , defined by the equation F̄αβFβγ =
FγβF̄ βα = δα

γ .
(2) Gauge theory, the rank of the Fαβ is incomplete, that is, rF < n − rW , and

the matrix Fαβ is noninvertible. In this case, we can find from (4.7) only rF

noncanonical velocities, while the rest (n − rW − rF ) of the velocities remain
arbitrary gauge parameters that correspond to the symmetries of a singular
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dynamical system. In the particular case rF = 0 (or zero matrix Fαβ) from
(4.7) we obtain

Gα = 0 (4.11)

and all the noncanonical velocities correspond to (n − rW ) gauge parameters
of the theory.

In the first case (nongauge theory) all noncanonical velocities can be excluded by
(4.10) and substituting them in (4.5) and (4.6). Then we obtain the Hamilton-like
equations for nongauge singular systems:

q̇i =
{
qi, H0

}
nongauge

, (4.12)

ṗi =
{
pi, H0

}
nongauge

, (4.13)

where we have introduced a new (nongauge) bracket for the two dynamical quan-
tities A, B,

{A, B}nongauge = {A, B} + DαA · F̄αβ · DβB (4.14)

and Dα is defined in (4.9). From (4.12) and (4.13), it follows that the new nongauge
bracket (4.14) uniquely determines the evolution of any dynamical quantity A in
time

dA

dt
=

∂A

∂t
+

{
A, H0

}
nongauge

. (4.15)

It is important too that the nongauge bracket (4.14) has all the properties of the
Poisson bracket: it is antisymmetric and satisfies the Jacobi identity. Therefore,
the definition (4.14) can be considered as some deformation of the Poisson bracket,
but not for all 2n variables as in the standard case, but only for 2rW canonical
coordinates (qi, pi), i = 1, . . . , rW . It follows from (4.14) and (4.15) that, as in the
standard case, if H0 does not depend on time explicitly, then it is conserved.

In the second case (gauge theory), only some of the noncanonical velocities q̇α

can be eliminated, the number of which is equal to the rank rF of the matrix Fαβ ,
and the rest

(
n − rW − rF

)
of the velocities are still arbitrary and can serve as

gauge parameters. Indeed, if the matrix Fαβ is singular and of the rank rF , then
we can bring it to the form that a nonsingular minor of size rF × rF which will be
in the upper left-hand corner. Then in the system (4.7), only the first rF equations
are independent. Let us present (noncanonical) indices α, β = rW + 1, . . . , n in the
form of pairs (α1, α2), (β1, β2), where α1, β1 = rW + 1, . . . , rF number the first rF
independent rows of the matrix Fαβ and correspond to the nonsingular minor of
Fα1β1 , the remaining (n − rW − rF ) rows will be dependent on the first ones, and
α2, β2 = rF + 1, . . . , n. Then the system (4.7) can be written as:

Fα1β1 q̇
β1 + Fα1β2 q̇

β2 = Gα1 , (4.16)

Fα2β1 q̇
β1 + Fα2β2 q̇

β2 = Gα2 . (4.17)
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Since Fα1β1 is nonsingular by construction, we can express the first rF canonical
velocities q̇α1 in terms of the remaining (n − rW − rF ) velocities q̇α2 as follows:

q̇α1 = F̄α1β1Gβ1 − F̄α1β1Fβ1α2 q̇
α2 , (4.18)

where F̄α1β1 is rF × rF -matrix which is inverse to Fα1β1 . Further, due to the fact
that rankFα1β1 = rF , the other blocks can be expressed via a nonsingular block
Fα1β1 :

Fα2β1 = λα1
α2

Fα1β1 , (4.19)

Fα2β2 = λα1
α2

Fα1β2 = λα1
α2

λγ1
β2

Fα1γ1 , (4.20)

Gα2 = λα1
α2

Gα1 , (4.21)

where λα1
α2

= λα1
α2

(
qi, pi, q

α
)

are rF × (
n − rW − rF

)
smooth functions. Since the

matrix Fαβ is given, we can determine the function λα1
α2

by rF × (
n − rW − rF

)
Eqs. (4.19),

λα1
α2

= Fα2β1F̄
α1β1 . (4.22)

Because
(
n − rW − rF

)
velocities q̇α2 are arbitrary, we can put them equal to

zero,

q̇α2 = 0, α2 = rF + 1, . . . , n, (4.23)

which can be considered as a gauge condition. Then from (4.18), it follows that

q̇α1 = F̄α1β1Gβ1 , α1 = rW + 1, . . . , rF . (4.24)

By analogy with (4.14), we introduce a new (gauge) bracket

{A, B}gauge = {A, B} + Dα1A · F̄α1β1 · Dβ1B. (4.25)

Then the equations of motion (4.5)–(4.7) can be written in the Hamiltonian-like
form (as (4.12) and (4.13)),

q̇i =
{
qi, H0

}
gauge

, (4.26)

ṗi =
{
pi, H0

}
gauge

. (4.27)

The evolution of a physical quantity A in time, as (4.15), is determined by the
gauge bracket (4.25),

dA

dt
=

∂A

∂t
+

{
A, H0

}
gauge

. (4.28)

In the particular case, when rF = 0, we have

Fαβ = 0 (4.29)

and hence all additional Hamiltonians vanish at Hα = 0, then it is seen from the def-
inition (3.7) that the Lagrangian does not depend on the noncanonical velocities q̇α.
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Therefore, taking into account (4.29) and (4.7) we find that the partial Hamiltonian
H0 does not depend on the noncanonical generalized coordinates qα,

∂H0

∂qα
= 0, (4.30)

if H0 is manifestly independent of time. In this case, the gauge bracket coincides
with the Poisson bracket, since the second term in (4.25) vanishes. Thus, we have
shown that the singular theories (with degenerate Lagrangians) at the classical
level can be described in terms of the partial Hamiltonian formalism with the
number of momenta of np, equal to the rank rW of the Hessian matrix np =
rW , without the introduction of additional relationships between the dynamical
variables (constraints).

5. Origin of Constraints in Singular Theories

As noted above (after (4.3)), the introduction of additional dynamical variables
must necessarily give rise to additional relationships between them. For example,
let us consider the “extra”

(
n−rW

)
momenta pα (since we have a complete descrip-

tion of the dynamics without them), which correspond to noncanonical generalized
velocities q̇α for the standard definition [9],

pα =
∂L

∂q̇α
, α = rW + 1, . . . , n. (5.1)

So (5.1), together with the definition of the partial generalized canonical momenta
(3.4) coincide with the standard definition of the “full” momenta (2.5). Using the
definition of additional Hamiltonians (3.7), we get the same

(
n − rW

)
relations

Φα = pα + Hα = 0, α = rW + 1, . . . , n, (5.2)

which are called the (primary) constraints [9] (in a resolved form). These relations
(5.2) are similar to the standard procedure of extension of the phase space (3.2).
One can enter any number n

(add)
p of “extra” momenta 0 ≤ n

(add)
p ≤ n − rW , then

the theory will have the same number n
(add)
p of (primary) constraints. In the partial

Hamiltonian formalism we have considered the case of n
(add)
p = 0, while in the Dirac

theory, n
(add)
p = n − rW , although it is possible to take intermediate variants, to

solve a specific task.
Now, the transition to the Hamiltonian by the standard formula

Htotal = piq̇
i + pαq̇α − L, (5.3)

cannot be done directly,c because it is impossible to express the noncanonical velo-
cities q̇α through the “extra” momenta pα and then apply the standard Legendre
transformation. But it is possible to transform Htotal (5.3) in such a way that
one can use the method of undetermined coefficients [9]. It is important that the

cTherefore, Htotal is also not a “true” Hamiltonian, as H0 in (3.5).
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constraints Φα do not depend on the noncanonical generalized velocities q̇α, as well
as the Hamiltonians H0, Hα, because the rank of the Hessian matrix is equal to rW .
So the total Hamiltonian can be written as

Htotal = H0 + q̇αΦα, (5.4)

where q̇α play the role of undetermined coefficients. The equations of motion can
be written in a Hamiltonian-like form in terms of the total Hamiltonian and the
full Poisson bracket (2.12) as follows:

dqA =
{
qA, Htotal

}
full

dt, (5.5)

dpA =
{
pA, Htotal

}
full

dt, (5.6)

with the
(
n − rW

)
of additional conditions (5.2). However, Eqs. (5.5), (5.6) and

(5.2) are not sufficient to solve the problem: to find the equations for the undeter-
mined coefficients q̇α in (5.4). These equations can be derived from some additional
principles, such as conservation relations (5.2) in time [9],

dΦα

dt
= 0. (5.7)

The time dependence of any physical quantity A is now determined by the total
Hamiltonian and the full Poisson bracket

dA

dt
=

∂A

∂t
+

{
A, Htotal

}
full

. (5.8)

If the constraints do not depend explicitly on time, then from (5.8) and (5.4)
we obtain

{
Φα, Htotal

}
full

=
{
Φα, H0

}
full

+
{
Φα, Φβ

}
full

q̇β = 0, (5.9)

which is a system of equations for the undetermined coefficients q̇α. Note that (5.9)
coincides with (4.7), because

Fαβ =
{
Φα, Φβ

}
full

, (5.10)

DαH0 =
{
Φα, H0

}
full

. (5.11)

However, in contrast to the reduced description (without the
(
n − rW

)
“extra”

momenta pα), where (4.7) is a system of
(
n − rW

)
linear equations in

(
n − rW

)
unknowns q̇α, the extended system (5.9) can lead to additional constraints (of higher
stages), which significantly complicates the analysis of the physical dynamics [9, 12].

It follows from (5.10) and (5.11), that the new brackets (gauge (4.25) and non-
gauge (4.14)) transform into the corresponding Dirac brackets. We also note that
our classification on the gauge and nongauge theories corresponds to the first- and
second-class constraints [9], and the limiting case of Fαβ = 0 (4.29) corresponds to
Abelian constraints [25, 26].
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6. Conclusion

Thus, in this paper a “shortened” formulation of classical singular theories is given.
In it there is no concept of constraints, because “extra” dynamical variables, namely,
the generalized momenta corresponding to noncanonical coordinates, are not intro-
duced. To this purpose, a partial Hamiltonian formalism is proposed. It is shown
that a special case of it effectively describes multi-time dynamics. It is proved that
singular theories (with degenerate Lagrangians) can be described in the frame-
work of our approach without the introduction of additional relations between the
dynamical variables (constraints), if the number of canonical generalized momenta
coincides with the rank of the Hessian matrix np = rW . From a physical point of
view, the introduction of the “extra” momenta is not necessary, because there is no
dynamics in these (degenerate) directions.

The Hamiltonian formulation of singular theories is done by introducing new
brackets (gauge (4.25) and nongauge (4.14)), which have all the properties of the
Poisson brackets (antisymmetry, Jacobi identity and their appearance in the equa-
tions of motion and evolution of the system in time).

If one extends the phase space to the full phase space, these brackets become
the Dirac brackets, and constraints are imposed on the “extra” momenta.

Our analysis suggests that the quantization of singular systems under the pro-
posed “shortened” approach can be carried out in a standard way, while not all 2n

variables of the extended phase space will be quantized, but only 2rW variables of
the (initially) reduced phase space. The remaining (noncanonical) variables can be
treated as continuous parameters.

Appendix A. Singular Theory as Multi-Time Dynamics

The condition (3.29) means that the Hamiltonians do not depend explicitly on the
noncanonical velocities q̇α, that is, H0 = H0

(
t, qi, pi, q

α
)
, Hα = Hα

(
t, qi, pi, q

α
)
,

α = np +1, . . . , n. Thus, the dynamical problem is defined on the manifold TQ∗
np

×
Qn−np , so that qα actually play the role of real parameters, similar to the time.d

Recalling (3.1) and reversing it, we can interpret
(
n−np

)
canonical generalized

coordinates qα as
(
n−np

)
“extra” (to t) times, and Hα as

(
n− np

)
corresponding

Hamiltonians. Indeed, we introduce the notation:

τµ = t, Hµ = H0, µ = 0, (A.1)

τµ = qµ+np , Hµ = Hµ+np , µ = 1, . . . ,
(
n − np

)
, (A.2)

where Hµ = Hµ

(
τµ, qi, pi

)
are Hamiltonians of the multi-time dynamics with nµ =

n − np + 1 times τµ. Note that τµ can be called generalized times, because they
are not real times (for the real multi-time physics see [27, 28] and review [29]),
in the same way as generalized coordinates have nothing to do with space-time
coordinates [22].

dIn this case the nondynamical Qn−np is isomorphic to the real space Rn−np .
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In this formulation, the differential of the action S = S
(
τµ, qi

)
in the multi-time

dynamics can be written as [30] (see also [23]),

dS = pidqi − Hµdτµ, i = 1, . . . , np, µ = 0, . . . ,
(
n − np

)
. (A.3)

It follows that the partial derivatives of the action are

∂S

∂qi
= pi,

∂S

∂τµ
= −Hµ (A.4)

and the system of
(
n − np + 1

)
Hamilton–Jacobi equations is

∂S

∂τµ
+ Hµ

(
τµ, qi,

∂S

∂qi

)
= 0, µ = 0, . . . ,

(
n − np

)
. (A.5)

We note that from (2.1) and (A.4) it follows the relation between Hµ. Indeed,
we differentiate the Hamilton–Jacobi equations (2.1) on τν :

∂2S

∂τµ∂τν
= −∂Hµ

∂τν
− ∂Hµ

∂pi

∂

∂τν

∂S

∂qi

= −∂Hµ

∂τν
− ∂Hµ

∂pi

(
−∂Hν

∂qi
− ∂Hν

∂pj

∂

∂qi

∂S

∂qj

)

= −∂Hµ

∂τν
+

∂Hµ

∂pi

∂Hν

∂qi
+

∂Hµ

∂pi

∂Hν

∂pj

∂2S

∂qi∂qj
. (A.6)

Then antisymmetrization (A.6) gives the integrability condition

∂2S

∂τν∂τµ
− ∂2S

∂τµ∂τν
=

∂Hµ

∂τν
− ∂Hν

∂τµ
+

{
Hµ, Hν

}
= 0. (A.7)

To obtain the equations of motion, one needs to set the variation to zero: δS = 0,
where

S =
∫ (

pidqi − Hµdτµ
)
, (A.8)

taking into account that independent variations δqi, δpi, δτµ vanish at the ends of
the interval of integration. We obtain

δS =
∫

δpi

(
dqi − ∂Hµ

∂pi
dτµ

)
+

∫
δqi

(
−dpi − ∂Hµ

∂qi
dτµ

)
, (A.9)

where the equations of the Hamiltonian for the multi-time dynamics can be written
in differential form [30]:

dqi =
{
qi, Hµ

}
dτµ, (A.10)

dpi =
{
pi, Hµ

}
dτµ, (A.11)
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which coincide with (3.17) and (3.18) by construction. The integrability conditions
(A.7) can be also written in differential forme:(

∂Hµ

∂τν
− ∂Hν

∂τµ
+

{
Hµ, Hν

})
dτν = 0, µ, ν = 0, . . . , (n − np), (A.12)

which coincide with Eqs. (3.30), also written in differential form.
Thus, we have shown that the nondynamical sector in the noncanonical version

of the partial Hamiltonian formalism (which is determined by the equations of
motion (3.20)–(3.22) with the additional integrability conditions (3.29), but without
any conditions on the number of momenta np) can be formulated as the multi-time
dynamics with the number of generalized times (and corresponding Hamiltonians
Hµ) nµ = n − np + 1 and Eqs. (A.10)–(A.12). In this formulation the number of
generalized times nµ is not fixed, and 1 ≤ nµ ≤ n + 1, because the number of
generalized momenta np is arbitrary less than or equal to the dimension of the
configuration space n. They are connected by the relation

nµ + np = n + 1, (A.13)

which can be called a times-momenta rule. In the particular case of singular theories
(with degenerate Lagrangians), the number of momenta np is fixed by the condition
(4.4) np = rW . So from (A.13) we obtain

nµ + rW = n + 1, (A.14)

which can be called a times-rank rule. If (3.29) and (A.14) are fulfilled, then such
a singular theory can be (effectively) described by the multi-time dynamics.
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